AI Starter Guide
AI Starter Guide
This book explains one topic per page, like a big glossary, easy wiki, quick encyclopedia, or summary notes. Edited by Joel Parker Henderson (@joelparkerhenderson).
Contents
Introduction
• What is this book?
• Who is this for?
• Why am I creating this?
• Are there more guides?
Introduction
Artificial intelligence
• Artificial General Intelligence (AGI)
• Artificial Super Intelligence (ASI)
• Natural language processing (NLP)
• Explainable Artificial Intelligence (XAI)
• Symbolic artificial intelligence
• Expert system
TODO
• AI agent
• AI alignment
• AI ethics
• Chain of thought
• AI hallucination
• Chatbot
• Neural Radiance Fields (NeRF)
• Hyperparameter tuning
• Machine learning parameters
• dendrogram
AI datasets
• Training data
• Validation data
• Test data
Computer processors
• Central Processing Unit (CPU)
• Graphics Processing Unit (GPU)
• Tensor Processing Unit (TPU)
• Vision Processing Unit (VPU)
• AI processor
• Field Programmable Gate Array (FPGA)
Machine learning
• Supervised learning
• Unsupervised learning
• Reinforcement learning
• Deep learning
• Backpropagation
• Forward Propagation
• Gradient descent
• Zero-shot learning
• Hidden Markov Model (HMM)
Machine learning algorithms
• Decision Tree
• instance-based learning
• lazy learning algorithms
Supervised
Supervised learning algorithms
• Support Vector Machine (SVM)
• Linear Regression: Used for predicting continuous numerical values.
• Logistic Regression: Used for binary classification problems.
• Decision Trees: Tree-based models for both classification and regression tasks.
• Random Forest: An ensemble method combining multiple decision trees.
Unsupervised
Unsupervised learning algorithms
• Self-Organizing Maps (SOM)
• Kohonen maps → Self-Organizing Maps (SOM)
Clustering algorithms
• K-means Clustering: Partition data points into k clusters based on their proximity to cluster centroids.
• Hierarchical clustering
Dimensionality reduction algorithms
• Principal Component Analysis (PCA)
• t-Distributed Stochastic Neighbor Embedding (t-SNE)
Anomaly detection algorithms
Statistical Methods:
• Modified Z-Score
• Z-Score
• Percentile: This method identifies anomalies based on percentiles or quantiles of the data distribution.
Density-Based Methods:
• Local Outlier Factor (LOF)
• Isolation Forest
• Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
Proximity-Based Methods:
• k-Nearest Neighbors (KNN)
• Distance-Based Outlier Detection (LOCI)
Machine Learning-Based Methods:
• Autoencoders
• One-Class Support Vector Machines (One-Class SVM)
Ensemble Methods:
• Majority voting
• Isolation Forest Ensemble
Generative models
• Gaussian Mixture Models (GMM): Model a combination of distributions, allowing data generation and density estimation.
• Autoencoders: Neural networks used for unsupervised feature learning.
• Variational Autoencoders (VAE): Learn to generate new data samples by mapping them to a latent space.
Ensemble learning algorithms
• Bagging (a.k.a. Bootstrap Aggregating)
• Random Forest
• Boosting
• Gradient Boosting Machines (GBM)
• Extreme Gradient Boosting (XGBoost)
• LightGBM
• Stacking (a.k.a. Stacked Generalization)
• Voting Classifiers (a.k.a. Voting Ensembles)
Unsupervised learning tasks
• Clustering
• Dimensionality Reduction
• Anomaly Detection
• Density Estimation
Large Language Model (LLM)
• Generative Pretrained Transformer (GPT)
• Contrastive Language-Image Pretraining (CLIP)
Neural Network (NN)
• Convolutional Neural Network (CNN)
• General Adversarial Network (GAN)
• Recurrent Neural Network (RNN)
• Deep Neural Network (DNN)
• Transformer architecture
Activation function
• Hyperbolic Tangent (tanh) activation function
• Rectified Linear Unit (ReLU) activation function
• Sigmoid activation function
Loss function
• Mean Squared Error (MSE)
• Mean Absolute Error (MAE)
Kernel trick
• linear kernel
• polynomial kernel
• radial basis function (RBF) kernel
• sigmoid kernel
Machine learning performance metrics
• Accuracy
• Precision
• Recall (≡ True Positive Rate, Sensitivity)
• Specificity (≡ True Negative Rate)
• F1-Score
• Receiver Operating Characteristic (ROC)
• Area Under the Curve (AUC)
• R-squared (R2)
• Silhouette Score
• Davies-Bouldin Index
• Adjusted Rand Index (ARI)
• Overfitting
• Underfitting
• True Positive Rate → Recall
• True Negative Rate → Specificity
AI tools
• AI content generator
• AI image generation
• AI form fill
• AI UI/UX
• AI internationalization/localization
• AI plagiarism checker
AI for business areas
• AI sales
• AI marketing
• AI accounting
• AI human resources
• AI resource leveling
• AI customer service
• AI for business strategy
• AI for partner management
• AI for product development
• AI for project management
• AI for software programming
AI + business sectors
• AI + adtech (advertising tech)
• AI + agtech (agricultural tech)
• AI + biotech (biological tech)
• AI + cleantech (clean energy tech)
• AI + edtech (educational tech)
• AI + fintech (financial tech)
• AI + govtech (governmental tech)
• AI + legtech (legal tech)
• AI + martech (marketing tech)
• AI + medtech (medical tech)
• AI + realtech (real estate tech)
• AI + regtech (regulatory tech)
Conclusion
• About the editor
• About the AI
• About the ebook